CSE4203: Computer Graphics
Chapter - 6 (part - B)
Transformation Matrices

Mohammad Imrul Jubair

Outline

- 3D Linear Transformation
- 3D Scaling
- 3D Rotation
- Translation
- Affine Transformation

Credit

CS4620: Introduction to
 Computer Graphics

Cornell University
Instructor: Steve Marschner http://www.cs.cornell.edu/courses/cs46 20/2019fa/

3D Transformation (1/1)

- The linear 3D transforms are an extension of the 2D transforms.
- For 2D:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a_{11} x+a_{12} y \\
a_{21} x+a_{22} y
\end{array}\right]
$$

- For 3D:

3D Scaling (1/1)

$$
\operatorname{scale}\left(s_{x}, s_{y}, s_{z}\right)=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]
$$

3D Rotation (1/5)

- Rotation around axis
- Counter-clockwise, w.r.t rotation axis.

(a)

3D Rotation (2/5)

$$
\operatorname{rotate}-\mathrm{Z}(\phi)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

3D Rotation (3/5)

$$
\text { rotate- } \mathrm{x}(\phi)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]
$$

3D Rotation (4/5)

$$
\begin{aligned}
& \text { rotate-z }(\phi)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \operatorname{rotate-x}(\phi)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right] \\
& \operatorname{rotate}-\mathrm{y}(\phi)=\left[\begin{array}{ccc}
\cos \phi & 0 & \sin \phi \\
0 & 1 & 0 \\
-\sin \phi & 0 & \cos \phi
\end{array}\right]
\end{aligned}
$$

3D Rotation (5/5)

$$
\begin{aligned}
& \text { rotate- } \mathrm{z}(\phi)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \operatorname{rotate}-\mathrm{x}(\phi)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right] \\
& \text { rotate-y }(\phi)=\left[\begin{array}{ccc}
\cos \phi & 0 & \sin \phi \\
0 & 1 & 0 \\
-\sin \phi & 0 & \cos \phi
\end{array}\right] \quad \text { Q: Why is it } \\
& \text { different?* }
\end{aligned}
$$

Translation in 2D (1/8)

- Move or Translate to another position.

Translation in 2D (3/8)

Translation in 2D (4/8)

- But, for others cases, i.e. - scaling, rotation, we changed vectors \mathbf{v} using a matrix \mathbf{M}.
- In 2D, these transforms have the form: -

$$
\begin{array}{|ll|l|}
\hline x^{\prime}=m_{11} x+m_{12} y, & \mathbf{v}^{\prime}=\mathbf{M} \mathbf{v} \\
y^{\prime}=m_{21} x+m_{22} y . & \\
\hline
\end{array}
$$

Translation in 2D (5/8)

- We cannot use such transforms to translate, only to scale and rotate them.

Translation in 2D (6/8)

- There is just no way to do that by multiplying (x, y) by a 2×2 matrix.
- adding translation to our system of linear transformations:

| $x^{\prime}=m_{11} x+m_{12} y$,
 $y^{\prime}=$
 $m_{21} x+m_{22} y$. | $\mathbf{v}^{\prime}=\mathbf{M} \mathbf{v}$ |
| :---: | :---: | :---: |
| $x^{\prime}=x+x_{t}$,
 $y^{\prime}=y+y_{t}$. | $\mathbf{v}^{\prime}=\mathbf{v}+\mathbf{t}$ |

Translation in 2D (7/8)

- This is perfectly feasible -

Translation in 2D (8/8)

- This is perfectly feasible
- But, the rule for composing transformations is not as simple and clean as with linear transformations.

$$
T=T_{n} \cdot T_{n-1} \ldots . T_{1} \cdot T_{0}
$$

| $x^{\prime}=m_{11} x+m_{12} y$,
 $y^{\prime}=$
 $m_{21} x+m_{22} y$. | $\mathbf{v}^{\prime}=\mathbf{M} \mathbf{v}$ |
| :---: | :---: | :---: |
| $x^{\prime}=x+x_{t}$,
 $y^{\prime}=y+y_{t}$. | $\mathbf{v}^{\prime}=\mathbf{v}+\mathbf{t}$ |

Homogeneous Coordinates (1/9)

- Instead, we can use a clever trick to get a single matrix multiplication to do both.

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
2 \times 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\end{array}\right]
$$

Homogeneous Coordinates (2/9)

- Instead, we can use a clever trick to get a single matrix multiplication to do both.
- The idea is simple: represent the point (x, y) by a 3D vector $[x y$ $1]^{\top}$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
3 \times 3 &
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Homogeneous Coordinates (3/9)

- Instead, we can use a clever trick to get a single matrix multiplication to do both.
- The idea is simple: represent the point (x, y) by a 3D vector [$x y$ $1]^{\top}$
- Use 3×3 matrices of the form.

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
m_{11} & m_{12} & x_{t} \\
m_{21} & m_{22} & y_{t} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Homogeneous Coordinates (4/9)

- This kind of transformation is called an affine transformation.
- this way of implementing affine transformations by adding an extra dimension is called homogeneous coordinates

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
m_{11} & m_{12} & x_{t} \\
m_{21} & m_{22} & y_{t} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Homogeneous Coordinates (5/9)

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
m_{11} & m_{12} & x_{t} \\
m_{21} & m_{22} & y_{t} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Homogeneous Coordinates (6/9)

- Translation:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & x_{t} \\
0 & 1 & y_{t} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Homogeneous Coordinates (7/9)

- Scaling:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{S}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~S}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Homogeneous Coordinates (8/9)

- Rotation:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

3D Transformation with Homogeneous Coordinates

(1/1)

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

2D/ 3D Transformations (1/3)

	2D	3D
T	$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{llc}1 & 0 & x_{t} \\ 0 & 1 & y_{t} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$	$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & p \\ 0 & 1 & 0 & q \\ 0 & 0 & 1 & r \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$
S	$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}\mathrm{S}_{\mathrm{x}} & 0 & 0 \\ 0 & \mathrm{~S}_{\mathrm{y}} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$	$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{llll}p & 0 & 0 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & r & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$
R	$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$	$R \circ t X=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos (\theta x) & -\sin (\theta x) & 0 \\ 0 & \sin (\theta x) & \cos (\theta x) & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ $R o t Y$

Inverse Transformations (1/2)

T	T-1
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & p \\ 0 & 1 & 0 & q \\ 0 & 0 & 1 & r \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$	$\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & -p \\ 0 & 1 & 0 & -q \\ 0 & 0 & 1 & -r \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{llll}p & 0 & 0 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & r & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$	$\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]=\left[\begin{array}{cccc}1 / p & 0 & 0 & 0 \\ 0 & 1 / q & 0 & 0 \\ 0 & 0 & 1 / r & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]$
$\begin{aligned} & \operatorname{Rot} X=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos (\theta x) & -\sin (\theta x) & 0 \\ 0 & \sin (\theta x) & \cos (\theta x) & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \\ & \operatorname{Rot} Y=\left[\begin{array}{cccc} \cos (\theta y) & 0 & \sin (\theta y) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin (\theta y) & 0 & \cos (\theta y) & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \\ & \operatorname{Rot} Z=\left[\begin{array}{cccc} \cos (\theta z) & -\sin (\theta z) & 0 & 0 \\ \sin (\theta z) & \cos (\theta z) & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \end{aligned}$	$?$

Inverse Transformations (2/2)

	Transformation	Inverse Transformation
T	$\mathrm{T}(t x, t y, t z)$	$\mathrm{T}^{-1}=\mathrm{T}(-t x,-t y,-t z)$
S	$\mathrm{S}(s x, s y, s z)$	$\mathrm{S}^{-1}=\mathrm{S}(1 / s x, 1 / s y, 1 / s z)$
		$\mathrm{R}^{-1}=\mathrm{R}(-d)=\mathrm{R}^{\top}$
R	$\mathrm{Rx}(\mathrm{d})$	$\mathrm{Rx}^{-1}=\mathrm{Rx}^{\top}$
	$\mathrm{Ry}(\mathrm{d})$	$\mathrm{Ry}^{-1}=\mathrm{Ry}^{\top}$
	$\mathrm{Rz}(\mathrm{d})$	$\mathrm{Rz}^{-1}=\mathrm{Rz}^{\top}$

[^0]
Practice Problem - 1

- Scale w.r.t the center

Practice Problem - 1 (Sol.)

- Scale w.r.t the center

Practice Problem - 1 (Sol.)

- Scale w.r.t the center

Practice Problem - 1 (Sol.)

- Scale w.r.t the center

Practice Problem - 1 (Sol.)

- Scale w.r.t the center

Practice Problem - 2

- We need to rotate a pyramid \boldsymbol{P} about point $(5,5)$ by 90°. You have to -
- Mention the steps to perform the task.
- Determine the composite transformation matrix \boldsymbol{M}.
- Multiply \boldsymbol{M} with \boldsymbol{P} and determine the new coordinates \boldsymbol{P}^{\prime}.
- Plot \boldsymbol{P} and \boldsymbol{P}^{\prime} on the same axis to show the rotation.

Additional Reading

- 3D Shearing
- 3D reflection
- Rigid-body transforms
- Windowing transformations

Exercises

- Exercise $1-6,8$ and 9

[^0]: Task: take any transformation matrix (i.e. scaling matrix S) with numerical values, do the matrix inversion and see if it becomes \boldsymbol{S}^{-1}

